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SOME INTERESTING DECISION FUNCTIONS 
Michael F. Capobianco 

Polytechnic Institute of Brooklyn 

Basic Considerations of Statistical Decision 
Theory 

The problem is to decide which of q possi- 
ble states of nature 81, is the true one 
by observing the outcome of some experiment 
which has n possible outcomes x1, x2 
For each O. there is a probability distribution 
vector 

= 

pli 
p 2i 

pnj - 

where p.. = P(x. I0. ). We also form a loss vector 
for eachJO. 

J 

W. = 

w 

w 2j 

w 

where w.. = the loss incurred in making decision 
d. when is the true state of nature; w.. > 0 and 

0 if and only if i j. In order to make deci- 
sions we need a mechanism for choosing a 
upon observing an xi. Such a mechanism is called 
a decision function and can be represented by a 
matrix 

all a12.... aln 

A 

a 
q 

a 

where a.. P(di x. ). 
The idea is to find a matrix A that in some 

sense minimizes the loss. We can compute the 
expected loss, called the risk, for any A under a 
given state of nature. This is denoted by R(A, O.) 
and 

R(A, W! A P. 

W! is the transpose of W.. In the absence 
of any further information one way of choosing a 
single decision function is by using the minimax 
criterion, i. e. , choose the function with risk 
equal to min max R(A, 8). 

A 

Another possibility is to use the maximum 
likelihood decision function, i. e. , choose the 
function A such that 

a = 1 if for all I 

o otherwise 

This is an example of an non - randomized decision 
function; each column of A has a single entry 
equal to 1 and all other entries equal to O. In 
such a case we say that A is non - randomized. 
Clearly each column of any A must add up to 1. 

If an a piiori distribution is available, i. e. , 

if one has a vector 

P = 

where P(0.) = the probability that is the true 
state of nature, one can then find the expected 
risk (or Bayes risk) 

AP. P 

where [1 1 ... 1] , a row vector of q s . 
One now chooses the decision function with the 
minimum expected risk. This is called the Bayes 
decision function. 

One property that a decision function should 
have is that of admissibility. To explain this 
term we introduce first the notion of dominance. 
If R(A, < R(B, 8.) for all O. and strict inequal- 
ity holds for at least one then A is said to 
dominate B. A decision function is admissible if 
it is not dominated by any other one. 
Proportional Likelihood Decision Function 

We argue as follows: There seems to be a 
weakness in the maximum likelihood criteria in 
that it chooses that state of nature 8. which yields 
the observed x. with the highest probability, even 
though some other state of nature may yield xi 
with a probability almost as high. It seems 
reasonable that it would be better to give all states 
of nature a chance of being chosen which is pro- 
portional to their respective probabilities of yield- 
ing xi . We, therefore, propose to form the ma- 
trix A with 

P(xjI8.) 

P(x e ) 
i= 1 

J 

The following example shows that such a decision 
function may be admissible. 
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W2 = 

[0 
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A2=[1 
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0 
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Sample Calculation: 
R(A4, e = W A4 P 1= 1 

= 
3 

Tabulation 
R(A, el) R(A, e2 ) 

Al 1 

1 5 

1 1 

A3 
2 1 

A4 
2 

2 
3 

A5 3 
2 1 

A6 3 
2 1 

A7 3 
A8 0 

Note that A2, A4, A5 and A6 are inadmissible. 
Also A3 and A7 are both maximum likelihood 
functions. Now for the decision function pro- 
posed above. 

2 2 

A = 
1 3 1 

Sample Calculation 
1 

2 3 
a22 1 1 

Now 

R :(A, = WI API = [0 1 2 2 1 

2 5 3 3 

3 

1 3 1 

2 5 7 3 
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1 1 

= 
and 

1 
+ 

43 
= 

1 R(A, e2) = AP2 = [1 
3 3 

3 1 

1 1 1 _ 43 
= + + 

so that A is admissible. Note that all losses 
were taken as equal in order to make things 
most favorable for a maximum likelihood deci- 
sion function. If we make this assumption in 
general i. e. , suppose W. is a q x 1 vector with 
0 the ith position and 'the quantity W in all 
other positions, then we can see that proportion- 
al likelihood decision functions become dominated 
by maximum likelihood decision functions, and in 
fact have a risk of W for each O. as We 
say, therefore, that they are asymptotically in- 
admissible. The proof is as follows: Let A be 
the proportional likelihood function 

R(A, ei) = AP. = ak pki jk 

k 1 ajk pki 

= 

n 
pki j i k= l j 
pk Pki n 

= pki (1 

which approaches 

= 
1 

pki 

k=1 
as because 

pki 
aik 

W 

1 
1 

as 
Now for a maximum likelihood decision 

function A, 

R(A, ei) = AP. = W a'k pki jik=1 jk 

where 

ajk 
if pkj 
otherwise . 

for all I 
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Therefore, 

R(A, ) = pki 

= pki 

where the sum is taken over all k such that 
pki < for some I. This is less than W for at 
least one 9. . 

Proportional Bayes Decision Functions 
We will assume that in our above example 

we have on a priori distribution given by 

= 

1 

3 
2 
3 

and we will show how to find the Bayes decision 
function. 

If we plot R(A, 91) against R(A, 92) for all 
the admissible A' s and join these points by a 
broken line we have 

It can easily be shown that any admissible 
randomized decision function can be obtained from 
the non - randomized admissi ble ones in the follow- 
ing way: Select two non - randomized admissible 
functions, say A3 and A7, which are jointed by a 
straight line segment. Choose A3 with probabil- 
ity a and A7 with probability 1 - a. This yields 
a randomized function A suchth .t 

R(A, 9i) = aR(A3, 9i) + (1 - a) R(A7, e.), i = 1, 2 

The point (R(A, 91), R(A, e2))lies on the line seg- 
mentjointing A3 and A7. Hence, the points of the 
entire broken line are the risk pairs for all ad- 
missible functions. To find which of these is the 
Bayes function we form the equation 

1 3 x+ 3y = k 

where, x is the risk under and and y is the risk 
under 92, and let k vary from zero up until this 
line first touches our broken line of admissible 
functions. As we can see from the diagram 
below, A7 is the Bayes decision function. 

line 
A problem arises in this procedure if the 

P(91) x P(02) = k (1) 

has a slope equal to that of one of the line seg- 
ments of admissible functions. In such a case 
there will be an infinite number of Bayes func- 
tions. In our example this would happen if 
P(01) = P(97) . Then (1) has a slope of -1, 

and so does the line segment joining A3 and A7. 
We now must choose one of the functions along 
this segment. To do this we argue as follows: 

while 

R(A3, 91) < R(A7, 

R(A7, < R(A3, 

Therefore if were the true state of nature, A3 
would be better, while if were true, A7 would 
be better. Hence, we propose choosing Al with 
probability P(91) and A7 with probability 
It. seems that the resulting function is in some 
sense better than either A3 or A7, but it is not 
clear how this can be expressed mathematically. 

The procedures discussed can all be gen- 
eralized to more than two states of nature. We 
used the above example in the interests of clarity 
of exposition. 


